• The basic trigonometry functions are,
• Graphs of these functions are given below,
• NOTE: Keep in mind when finding these trig values, that any value that does not lie in the right hand quadrants of cartesian space, may need additions of ±90° or ±180°.
• Now a group of trigonometric relationships will be given. These are often best used when attempting to manipulate equations.
• These can also be related to complex exponents,
• The basic definitions are given below,
• some of the basic relationships are,
• Some of the more advanced relationships are,
• Some of the relationships between the hyperbolic, and normal trigonometry functions are,
****************** ADD IN MASS MOMENTS AND DESCRIPTIONS ************
• A set of the basic 2D and 3D geometric primitives are given, and the notation used is described below,
• A general class of geometries are conics. This for is shown below, and can be used to represent many of the simple shapes represented by a polynomial.
• The most fundamental mathematical geometry is a line. The basic relationships are given below,
• If we assume a line is between two points in space, and that at one end we have a local reference frame, there are some basic relationships that can be derived.
• The relationships for a plane are,