1.1 SAMPLES AS IMPULSE FUNCTION

 

• An impulse function is a very (infinitely) thin but has a weight of 1. We can approximate this function with a finite width pulse. In both figures the delta function has been shifted in time.

 

 

• Some of these basic properties are,

 

 

• Now consider a train of sample pulses with a regular interval T,

 

 

• The form derived above will allow a z-transform later.

 

• We can also recognize that if a function X(t) has a period less than the sample period ‘T’ then X*(t) will not be a reasonable sample of X(t). We call this effect aliasing.