• Phasors are used for the analysis of sinusoidal, steady state conditions.
• Sinusoidal means that if we measure the voltage (or current) at any point ‘i’ in the circuit it will have the general form,
• Steady state means that the transients have all stopped. This can be crudely though of as the circuit has ‘charged-up’ or ‘warmed-up’.
• Steady state is another important concept, it means that we are not concerned with the initial effects when we start a circuit (these effects are known as the transients). The typical causes of transient effects are inductors and capacitors.
• We typically deal with these problems using phasor analysis. In the example before we had a voltage represented in the time domain,
• Basically to do this type of analysis we represent all components voltages and currents in complex form, and then do calculations as normal.
• Consider the simple example below,
• When dealing with alternating currents we are faced with the problem of how we represent the signal magnitude. One easy way is to use the peak values for the wave.
• Another common method is to use the effective value. This is also known as the Root Mean Squared value.