Academic Unit: Padnos School of Engineering
Class Times: Lecture: 1-2pm - Mon, Wed, Fri in DEV136E
Lab 1: 8-11am - Tue - Dr. Jack, KEB 205
Lab 2: 1-4pm - Tue - Dr. Blauch, KEB 205
Lab 3: 8-11am - Thurs - Dr. Blauch, KEB 205
Lab 4: 8-11am - Fri - Dr. Blauch, KEB 205
Description: Mathematical modeling of mechanical, electrical, fluid, and thermal dynamic
systems involving energy storage and transfer by lumped parameter linear
elements. Topics include model building, Laplace transforms, transfer
functions, system response and stability, Fourier methods, frequency response
feedback control, control methods, and computer simulation. Emphasis on
linear mechanical systems. Laboratory.
Prerequisites: Admission to the school of engineering (including CS 162, EGR 209, EGR 214, MTH 302, ENG 150)
Corequisites: EGR 314 - Dynamics
Web: http://claymore.engineer.gvsu.edu
Textbook: Jack, H. EGR345 Dynamic Systems Modeling and Control,
Reference: Frank Ayres, Jr., Philip A. Schmidt, College Mathematics; Schaum's Outlines,
Second Edition, McGraw-Hill, 1992.
Goals: The main objective of this course is to develop your knowledge and ability to
mathematically model, simulate, and analyze dynamic systems. In the lab you
will study the time and frequency response of dynamic systems and further
develop your laboratory, data analysis, and report writing skills. During this
course you will practice the application of differential equations to the
solution of practical engineering problems and then verify some of these
solutions in the laboratory. The overall goal is to improve your engineering
problem solving ability in the area of time-varying systems.
Another major objective is to improve your technical writing skills. To this
end, this course has been designated a supplemental writing skills (SWS)
course and significant time and effort will be spent on writing instruction and
the creation of technical reports.
Instruction Methods: Lecture, discussion, laboratories, assignments and projects.
Prerequisite Topics: 1. Electric circuits
3. Trigonometry, algebra, matrices
4. Calculus and differential equations
5. Computer applications and programming in C
Topics: 1. Introduction and math review
3. Calculus and differential equations
9. Fourier and root-locus analysis
10. Converting between analog and digital
Labs and SWS writing skills 40%
Note: A student must obtain above 50% in ALL components of the
grading above to receive a passing grade in the course.
Tests and assignments will be given at natural points during the term as new
material is covered. Laboratory work will be assigned to reinforce lecture
material and expose the student to practical aspects of systems modeling
and control. Special attention will be paid to writing skills in the laboratories.
A final examination will be given to conclude the work, and test the
students global comprehension of the material. A design project will be done in
class to emphasize lecture and lab topics. Details of this will be announced
This course is designated SWS (Supplemental Writing Skills). As a result you
MUST have already taken and passed ENG150 with a grade of C or better,
or have passed the advanced placement exam with a score of 3 or higher.
If you have not already done this, please see the instructor.
The official university SWS statement is:
“ This course is designated SWS (Supplemental Writing Skills). Completion of English 150 with a grade of C or better (not C-) is the prerequisite. SWS credit will not be given to a student who completes the course before the prerequisite. SWS courses adhere to certain guidelines. Students turn in a total of at least 3,000 words or writing during the term. Part of that total may be essay exams, but a substantial amount of it is made up of finished essays or reports or research papers. The instructor works with the students on revising drafts of their papers, rather than simply grading the finished pieces of writing. At least four hours of class time are devoted to writing instruction. At least one third of the final grade in the course is based on the writing assignments.”
The main source of writing grades are the laboratories and they are worth 40%
of the final grade. You may look at all of this grade as writing. If the level of
writing is not acceptable it will be returned for rewriting and it will be awarded
partial marks. It is expected that the level of writing improve based upon
feedback given for previous laboratory reports. A lab that would have received
a grade of ‘A’ at the beginning of the term may very well receive an ‘F’ at the
end of the term. It is expected that a typical lab will include 500-1000 words,
and there will be approximately 10 labs in the course. Writing instruction will
be given in the labs at appropriate times and this will total four hours.