1. Describe an application for DH networking.

2. The response times of hydraulic switches is being tested in a PLC controlled station. When the units arrive a ‘part present’ sensor turns on. The part is then clamped in place by turning on a ‘clamp’ output. 1 second after clamping, a ‘flow’ output is turned on to start the test. The response time is the delay between when ‘flow’ is turned on, and the ‘engaged’ input turns on. When the unit has responded, up to 10 seconds later, the ‘flow’ output is turned off, and the system is allowed to sit for 5 seconds to discharge before unclamping. The result of the test is written to one of the memory locations from F8:0 to F8:39, for a total of 40 separate tests. When 40 tests have been done, the memory block from F8:0 to F8:39 is sent to another PLC using DH+, and the process starts again. Write the ladder logic to control the station.

3. a) Controls are to be developed for a machine that packages golf tees. Each container will normally hold 1000 tees filled from three different hoppers, each containing a different color. For marketing purposes the ratio of colors is changed frequently. To make the controller easy to reconfigure, the number of tees from each hopper are stored in the memory locations N7:0, N7:1 and N7:2. The process is activated when an empty package arrives, activating a PRESENT input. When filling the package, the machine opens a single hopper with a solenoid, and counts the tees with an optical sensor, until the specified count has been surpassed. It then repeats the operation with the two other hoppers. When done, it activates a SEAL for 2 seconds to advance a heated ram that seals the package. After that, the DONE output is turned on until the PRESENT sensor turns off. Write the ladder logic for this process.

b) Write a ladder logic program that will read and parse values from an RS-232 input. The format of the input will be an eleven character line with three integer numbers separated by commas. The integers will be padded to three characters by padding with zeros. The line will be terminated with a CR and a LF. The three integers are to be parsed and stored in the memory locations N7:0, N7:1 and N7:2 to be used in a golf tee packaging machine.

4. A master PLC is located at the top of a mine shaft and controls an elevator system. A second PLC is located half a mile below to monitor the bottom of the elevator shaft. At the top of the mine shaft the PLC has inputs for the door (D), a top limit switch (T), and start (G) and stop (S) pushbuttons. The PLC has two outputs to apply power (P) to the motor, or reverse (R) the motor direction. The PLC at the bottom of the elevator shaft checks a bottom limit switch (B) and a door closed (C) sensor. The two PLCs are connected using DH+. Write ladder logic for both PLCs and indicate the communication settings. Use structured design techniques.


[an error occurred while processing this directive]