(Note: Problem solutions are available at

1. Develop an SFC for a two person assembly station. The station has two presses that may be used at the same time. Each press has a cycle button that will start the advance of the press. A bottom limit switch will stop the advance, and the cylinder must then be retracted until a top limit switch is hit.

2. Create an SFC for traffic light control. The lights should have cross walk buttons for both directions of traffic lights. A normal light sequence for both directions will be green 16 seconds and yellow 4 seconds. If the cross walk button has been pushed, a walk light will be on for 10 seconds, and the green light will be extended to 24 seconds.

3. Draw an SFC for a stamping press that can advance and retract when a cycle button is pushed, and then stop until the button is pushed again.

4. Design a garage door controller using an SFC. The behavior of the garage door controller is as follows,

- there is a single button in the garage, and a single button remote control.

- when the button is pushed the door will move up or down.

- if the button is pushed once while moving, the door will stop, a second push will start motion again in the opposite direction.

- there are top/bottom limit switches to stop the motion of the door.

- there is a light beam across the bottom of the door. If the beam is cut while the door is closing the door will stop and reverse.

- there is a garage light that will be on for 5 minutes after the door opens or closes.

[an error occurred while processing this directive]